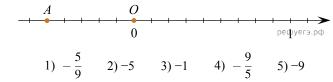

Вариант № 44194

Централизованное тестирование по математике, 2022


При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке изображены две окружности с центрами в точках A и B. Если MK = 18, то сумма радиусов этих двух окружностей равна:

- 1) 10 2) 6 3) 12
- 4) 15
- 5) 17
- **2.** Определите координату точки A, изображенной на координатной прямой.

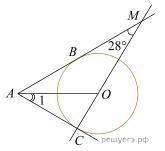
- **3.** Найдите значение выражения $8^{0.5} \cdot 5^{0.5}$.
- 1) $\sqrt[4]{40}$ 2) 13 3) $2\sqrt{10}$ 4) $\sqrt{13}$
- **4.** Даны пары значений переменных x и y: $(1; \sqrt{13}); (\sqrt{7}; 7); (\sqrt{13}; 1); (3; \sqrt{5});$ $(\sqrt{3}; \sqrt{11})$. Укажите пару, которая НЕ является решением уравнения $x^2 + y^2 = 14$.

- 1) $(1:\sqrt{13})$ 2) $(\sqrt{7};7)$ 3) $(\sqrt{13};1)$ 4) $(3;\sqrt{5})$ 5) $(\sqrt{3};\sqrt{11})$
- **5.** Функция y = f(x) задана на промежутке [-6; -1] и является возрастающей на области определения. Расположите значения функции $f(-\sqrt{10}), f(-\sqrt{6}), f(-\sqrt{17})$ в порядке убывания.

- 1) $f(-\sqrt{6}), f(-\sqrt{10}), f(-\sqrt{17})$ 2) $f(-\sqrt{17}), f(-\sqrt{10}), f(-\sqrt{6})$ 3) $f(-\sqrt{10}), f(-\sqrt{17}), f(-\sqrt{6})$ 4) $f(-\sqrt{17}), f(-\sqrt{6}), f(-\sqrt{10})$ 5) $f(-\sqrt{6}), f(-\sqrt{17}), f(-\sqrt{10})$
- 6. Показ фильма начался в 21 часов 34 минут, а закончился в 23 часов 16 минут. Какова (в часах) продолжительность показа фильма?

1) 2,3 प 2) 1,3 प 3) $1\frac{5}{6}$ प 4) 1,7 प 5) 1,42 प

7. Фирма, выпускающая плитку размером 45 см в ширину и 60 см в длину, получила заказ на изготовление нового образца плитки шириной 36 см. Определите, какова должна быть длина нового образца (в см), чтобы отношение ширины к длине у старого и нового образцов было одинаковым.


50 см

2) 56 cm 3) 51 cm

4) 45 cm

5) 48 cm

8. Из точки A к окружности с центром O проведены две касательные AB и AC, где B и C — точки касания. Через точки C и O проведена прямая, которая пересекает касательную AB в точке M (см. рис.). Найдите градусную меру угла 1, если $\angle AMC = 28^{\circ}$.

- 2) 31° 1) 30°
- 3) 62°
- 4) 28°
- 5) 14°
- 9. Найдите значение выражения $2\sqrt{2}\cos\frac{\pi}{6}$ tg $\frac{2\pi}{3}$.

- 1) $-\sqrt{6}$ 2) $-\sqrt{2}$ 3) $3\sqrt{2}$ 4) $-3\sqrt{2}$ 5) $\sqrt{6}$

- 10. Укажите номер пары взаимно простых чисел.
 - 1) 6 и 15 2) 15 и 34 3) 6 и 34
- 4) 20 и 34
- 5) 15 и 20
- **11.** Упростите выражение $\sqrt{36x^2} \sqrt{49y^2}$, если $x \ge 0$, $y \le 0$.
 - 1) -18x-7v 2) -6x+7v 3) 6x-7v 4) -6x-7y 5) 6x+7y

12. Укажите номера функций, областью определения которых является множество всех действительных чисел.

1)
$$y = \sqrt{x - 10}$$
; 2) $y = \sin 10x$;
3) $y = \log_5(x - 10)$; 4) $y = 10^{x - 10}$; 5) $y = \lg 10x$.
1) $y = \sqrt{x - 10}$ 2) $y = \sin 10x$ 3) $y = \log_5(x - 10)$ 4) $y = 10^{x - 10}$
5) $y = \lg 10x$

13. Даны две параллельные плоскости α и β , расстояние между которыми равно $3\sqrt{2}$. Прямая a пересекает плоскости α и β в точках A и B соответственно и образует с ними угол 30° . Найдите длину отрезка AB.

1)
$$3\sqrt{6}$$
 2) $3\sqrt{2}$ 3) $6\sqrt{2}$ 4) $6\sqrt{3}$ 5) $9\sqrt{2}$

14. Дана функция $y = \left(\frac{1}{2}\right)^x$. График функции y = g(x) получен из графика функции $y = \left(\frac{1}{2}\right)^x$ сдвигом его вдоль оси абсцисс на 2 единицы вправо и вдоль оси ординат на 3 единицы вверх. Значение g(-4) равно:

15. Наибольшим целым решением совокупности неравенств $\begin{bmatrix} 5x + 16 < 0, \\ -7 > x \end{bmatrix}$ является:

16. Для неравенства $\frac{x-3}{(x+4)(x-16)} \le 0$ укажите номера верных утверждений:

- 1) количество всех целых решений неравенства равно 21;
- 2) неравенство равносильно неравенству $x^2 19x + 48 \le 0$;
- 3) неравенство верно при $x \in [-12; -5];$
- 4) число -3 является решением неравенства;
- 5) наибольшее целое решение неравенства равно 15.

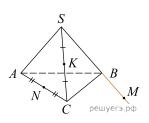
17. Тангенс угла наклона к оси абсцисс касательной, проведенной к графику функции $f(x) = 5x^2 - 48x + 2$ в точке с абсциссой x_0 , равен –8. Найдите значение x_0 .

18. Найдите объем прямой призмы $ABCDA_1B_1C_1D_1$, в основании которой лежит параллелограмм ABCD, если длины ребер AB и AA_1 равны 2 и 1 соответственно, а расстояние точки A_1 до прямой CD равно 5.

1)
$$2\sqrt{6}$$
 2) 16 3) $4\sqrt{6}$ 4) 10 5) $8\sqrt{6}$

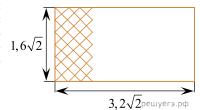
19. На координатной плоскости дана точка A(2; 4). Для начала каждого из предложений A-B подберите его окончание 1-6 так, чтобы получилось верное утверждение.

Начало предложения	Окончание предложения
А) Если точка B симметрична точке A относительно оси ординат, то расстояние между точками A и B равно Б) Если точка C симметрична точке A относительно прямой $y=1$, то расстояние между точками A и C равно В) Если точка N симметрична точке A относительно точки $D(-1;-1)$, то расстояние между точками A и N равно	1) 8 2) $2\sqrt{34}$ 3) $2\sqrt{5}$ 4) 6 5) $\sqrt{34}$ 6) 4


Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните, что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1B4.

20. В прямоугольном треугольнике $ABC \ \angle C = 90^\circ$, CH — высота, проведенная к гипотенузе, $BH = 2\sqrt{3}$, $\angle BCH = 30^\circ$. Для начала каждого из предложений A-B подберите его окончание 1-6 так, чтобы получилось верное утверждение.

Начало предложения	Окончание предложения
 А) Длина стороны BC треугольника ABC равна Б) Длина стороны AC треугольника ABC равна В) Расстояние от точки пересечения биссектрис треугольника ABC до стороны AB равно 	1) $\sqrt{3}$ 2) $8\sqrt{3}$ 3) 12 4) $6-2\sqrt{3}$ 5) $4\sqrt{3}$ 6) $4\sqrt{15}$


Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните, что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1B4.

- **21.** Дана треугольная пирамида SABC. Точки K и N являются серединами ребер SC и AC соответственно, точка M лежит на прямой SB (см. рис.). Выберите три верных утверждения.
 - 1. Прямая *KN* пересекает плоскость *ASB*.
 - 2. Прямая *КМ* лежит в плоскости *BSC*.
 - 3. Прямая *NM* пересекает плоскость *BSC*.
 - 4. Прямая *NM* пересекает прямую *BC*.
 - 5. Прямая *KN* параллельна плоскости *ASB*.
 - 6. Прямая KM пересекает прямую AB.

Ответ запишите цифрами (порядок записи цифр не имеет значения). Например: 124.

22. Пол на кухне начали выкладывать квадратной плиткой так, как показано на рисунке. Размеры плитки 40 см \times 40 см. Размеры кухни указаны на рисунке в метрах. Какое наименьшее количество плиток может понадобиться, чтобы выложить весь пол? Толщиной шва пренебречь.

- **23.** Пусть $A = \sqrt[3]{\sqrt{11 4\sqrt{6}} \sqrt{8} \sqrt[6]{27}}$. Найдите значение выражения A^{12} .
- **24.** Найдите (в градусах) корень уравнения $4\cos(58^\circ-x)\cos(32^\circ+x)=\sqrt{3}$ на промежутке $(0^\circ,45^\circ)$.
- **25.** Дан параллелограмм ABCD, точка K лежит на прямой, содержащей сторону BC, так, что точка B лежит между точками K и C и $\frac{KB}{BC}=\frac{2}{3}$. Отрезок DK пересекает сторону AB в точке P, а диагональ AC в точке T. Найдите длину отрезка PT, если DK=80.
 - **26.** Найдите сумму квадратов корней уравнения $5\sqrt{x^2+8x-11}=11-8x-x^2$.
- **27.** Найдите произведение наименьшего целого решения на количество всех целых решений неравенства

$$\left(\frac{1}{15}\right)^{\frac{x-8}{x+5}} + 3 \cdot \left(\frac{1}{30}\right)^{\frac{x-8}{x+5}} \leqslant 4 \cdot \left(\frac{1}{60}\right)^{\frac{x-8}{x+5}}.$$

- **28.** При делении натурального числа b на 25 с остатком, отличным от нуля, неполное частное равно 5. К числу b слева приписали некоторое натуральное число a. Полученное натуральное число разделили на 20 и получили 12 в остатке. Найдите число b.
- **29.** В параллелограмме длина одной из сторон вдвое больше длины другой, а острый угол равен 60°. Большая сторона параллелограмма лежит в плоскости α , а его большая диагональ образует с этой плоскостью угол, синус которого равен $\frac{\sqrt{21}}{35}$. Найдите значение выражения $\frac{12}{\sin^2\beta}$, где β угол между плоскостью параллелограмма и плоскостью α .
 - 30. Найдите сумму квадратов корней (квадрат корня, если он единственный) уравнения

$$\log_{x+2}(x^2 - 2x + 9) \cdot \log_5(x+2) = \log_5(6x + 18).$$

- **31.** Отрезок BD является биссектрисой треугольника ABC, в котором $\frac{BC}{AB}=\frac{1}{3}$ и $\frac{BC}{AC}=\frac{3}{8}$. По отрезку из точек B и D одновременно навстречу друг другу с постоянными и неравными скоростями начали движение два тела, которые встретились в точке пересечения биссектрис треугольника ABC и продолжили движение, не меняя направления и скорости. Первое тело достигло точки D на 1 минуту 11 секунд раньше, чем второе достигло точки B. За сколько секунд второе тело прошло весь путь от точки D до точки B?
- 32. Равнобедренная трапеция с основаниями длиной 5 и 1 и острым углом 60° вращается вокруг прямой, содержащей ее боковую сторону. Найдите объем тела вращения V и в ответ запишите значение выражения $\frac{V}{\pi}$.